
Neuropsychopharmacologia Hungarica 2013. XV. évf. 4. szám 206

Integration of neuronal and glial signalling by pyramidal cells 
of the rat prefrontal cortex; control of cognitive functions and 
addictive behaviour by purinergic mechanisms

The medial prefrontal cortex (PFC) is thought to be the highest order association area in the 
mammalian cortex which is involved in cognitive functions. Especially, layer V pyramidal cells 
integrating afferent innervations from dopaminergic cell groups in the ventral tegmental 
area, glutamatergic inputs from the thalamus and neighbouring PFC pyramical cells, as well 
as GABAergic inputs from local interneurons are crucial for processing short-term working 
memory. These neurons are endowed with the NMDA- and AMPA-type excitatory amino acid 
receptors, described to be involved in the regulation of synaptic plasticity, the apparent basis 
of elementary learning processes. NMDA receptor currents were in fact regulated on the one 
hand by dopamine D1 receptors and on the other hand by ATP-sensitive receptors of the 
P2Y-type. P2Y4 receptors acted indirectly to potentiate NMDA receptor-currents by releas-
ing vesicular glutamate from astrocytes, or attenuated these currents directly by stimulating 
P2Y1 receptors located at the PFC cells themselves. Long-term depression (LTD) induced in 
PFC pyramidal neurons could be blocked by P2Y1 receptors in a manner not depending on 
NMDA receptors but targeting voltage-sensitive dendritic Ca2+ channels. In vivo data also sup-
port the notion that P2Y1 receptors participate in the regulation of cognitive processes and 
addiction. For example, in a spatial delayed win-shift task, P2Y1 receptor-activation has been 
shown to deteriorate not the primary storage of information but its processing during and 
after a delay. Further, it is widely accepted that behavioural sensitization in animals provides 
a model for the intensification of drug craving believed to underlie addiction in humans. In 
fact, sensitization to amphetamine was interrupted by the blockade of P2Y1 receptors in the 
mesocortico-limbic dopaminergic system. 
(Neuropsychopharmacol Hung 2013; 15(4): 206-213)
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PURINERGIC SIGNALLING

ATP is released from healthy cells and reaches the 
extracellular space as a transmitter, co-transmitter 
or signalling molecule released from neurons or glial 
cells (Burnstock, 2004; Illes and Ribeiro, 2004). How-
ever, pathological concentrations of ATP may arise in 
the neighbourhood of injured or dying cells, because 
of a spontaneous efflux of the purine via the dam-
aged plasma membrane which is no longer a barrier 
for the extremely high intracellular ATP levels to 
pour out (Köles et al., 2005; Burnstock et al., 2011). 
ATP acts at two types of membrane receptors called 

P2X (ligand-gated cationic channels) and P2Y (G 
protein-coupled receptors) (Abbracchio and Burn-
stock, 1994). Both of them are further classified into 
several subtypes (P2X1-7; P2Y1,2,4,6,11,12,13,14) 
occurring in various mammalian cell types (Khakh 
et al., 2001; Abbracchio et al., 2006). Furthermore,  
a complex family of ectoenzymes rapidly metabo-
lizes extracellular nucleotides producing either inac-
tive degradation products or active metabolites with 
sometimes altered purinoceptor selectivity (Zim-
mermann, 2000). While ATP/ADP stimulates the 
P2 receptors, adenosine activates its own receptors 
of the P1 class. Since P2 and P1 receptors are often 
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functionally antagonistic, the breakdown of ATP not 
only terminates purinergic signalling but brings new 
players with different properties into the game as well. 
Eventually, external ATP may also fulfil a regulatory 
function as a phosphate donor and phosphorylate 
membrane constituents thereby modulating their 
properties (Wirkner et al., 2005).

INTERACTION BETWEEN THE DOPAMINERGIC 
AND GLUTAMATERGIC SYSTEMS IN THE 
PREFRONTAL CORTEX

The medial prefrontal cortex (PFC) is thought to be 
the highest order association area in the mammalian 
cortex which is involved in working memory and 
decision making (Goldman-Rakic, 1995) as well as in 
the pathophysiology of schizophrenia and addiction 
(Grossberg, 2000) in both primates and rodents. It has 
been reported that layer V pyramidal neurons play a 
key role in the network activity of the PFC (Gulledge 
and Stuart, 2003) and are crucial for processing short-
term working memory (Goldman-Rakic et al., 1989). 
Pyramidal neurones of the PFC are known to synapse 
in the VTA onto dopamine neurones that project back 
to the PFC but not onto such that project to the nucle-
us accumbens (Carr and Sesack, 2000). Further, PFC 
afferents control mesoaccumbal projection neurones 
by an indirect pathway involving neurones in the 
pedunculo pontine tegmentum and the laterodorsal 
tegmentum (LDT) (Del Arco and Mora, 2008). PFC 
neurons in turn receive afferent innervations from 
dopaminergic cell groups localized in the ventral teg-
mental area (Brozoski et al., 1979). The glutamatergic 
input originates from the mediodorsal nucleus of the 
thalamus and from neighbouring PFC pyramidal cells 
interconnected with each other (Groenewegen, 1988). 

Dopamine may affect pyramidal neurons prima-
rily through D1 receptor-mediated immediate excit-
ability changes (Gulledge and Jaffe, 2001; Dong and 
White, 2003) or through an increased synaptic input 
from GABAergic interneurons (Seamans et al., 2001). 
PFC pyramidal neurons express all five subtypes of 
dopamine receptor mRNA (Lidow et al., 1998) as well 
as mRNA for the NMDA type excitatory amino acid 
(EAA) receptor (Scherzer et al., 1998). In consequence, 
dopamine appears to facilitate glutamatergic trans-
mission onto PFC pyramidal neurons via a postsyn-
aptic interaction between D1 and NMDA receptors 
(Cepeda et al., 1992; Seamans et al., 2001; Wirkner et 
al., 2004) both situated at the soma, dendritic shafts 
and synaptic spines of these neurons themselves 
(Goldman-Rakic et al., 1989). Whereas NMDA re-

ceptor-currents were potentiated by dopamine D1 but 
not D2 receptor-activation, AMPA receptor-currents 
were not altered under the same conditions (Wirkner 
et al., 2004). It is noteworthy that NMDA receptors 
are essential for normal information processing and 
for proper memory function (Nakanishi, 1992).

THE PURINERGIC SYSTEM IS A NEW PLAYER  
IN THE PREFRONTAL CORTEX; IN VITRO DATA

All previous experiments were performed in acutely 
prepared PFC slice preparations where the axonal 
projections of the mesocortico-limbic dopaminergic 
neurons located in the ventral tegmentum and termi-
nating at the PFC pyramidal neurons were transected. 
To circumvent this complication we co-cultured indi-
vidual brain slices of the ventral tegmentum/substan-
tia nigra (VTA/SN complex) with those of the PFC 
(Franke et al., 2003b; Heine et al., 2007). After 10-28 
days of culturing fibre bridges were established con-
necting the VTA/SN with the PFC. These fibre bridges 
functionally connect the two areas of the brain as 
proven by recording the orchestrated synaptic activ-
ity by means of a multielectrode array system (Dossi 
et al., 2012). Moreover, electrical stimulation in the 
VTA/SN induced glutamatergic EPSCs in the PFC. 
In contrast to previous results, D1 receptor agonists 
enhanced the NMDA component of the EPSC and 
inhibited its AMPA component – both isolated phar-
macologically by the respective EAA antagonist. At 
the moment it is difficult to explain this inconsistency 
between the results obtained at acute PFC slices and 
organotypic cultures of the VTA/SN-PFC. However, 
one of the reasons may be that the dopaminergic 
agonists/antagonist flushed only the dopaminergic 
terminals and the innervated pyramidal neurons in 
the one case, whereas in the other case the cell bodies 
of the dopaminergic neurons are also incubated with 
the dopaminergic ligands.

The co-release of ATP has been repeatedly dem-
onstrated from postganglionic sympathetic neurons 
in the periphery (von Kügelgen and Starke, 1991) and 
from locus coeruleus neurons of the central nervous 
system (CNS) (Poelchen et al., 2001). P2X receptors 
mediate a fraction of excitatory postsynaptic currents 
(EPSCs) of rat pyramidal neurons in the hippocampal 
CA1 layer (Pankratov et al., 2002) and layer II/III of 
the somatosensory cortex (Pankratov et al., 2002). 
P2Y receptors were shown to positively interact with 
NMDA receptors situated at PFC layer V pyrami-
dal neurons (Wirkner et al., 2002) just as dopamine 
does (Wirkner et al., 2004). Thereby, the possible co-



re  v ie  w � Ute Krügel, László Köles and Peter Illes

Neuropsychopharmacologia Hungarica 2013. XV. évf. 4. szám 208

transmitters dopamine and ATP (Krügel et al., 2001b) 
may shape in an equal and possibly additive fashion 
the glutamatergic excitation in the prelimbic area. 

A wealth of data indicate that astrocytes are an 
integral element of the circuitry for synaptic plasticity 
(Araque et al., 2001). In addition to the neuronal re-
lease of EAAs, glutamate may be secreted from astro-
cytes not only (1) by exocytotic processes but also (2) 
by connexin hemichannels, providing a substrate for 
gap junction formation, (3) by glutamate transporters 
operating in the reverse mode, and (4) by a subtype of 
P2X receptors (P2X7), establishing a link between the 
release of ATP and glutamate (Illes and Ribeiro, 2004). 
In consequence, astrocytic glutamate is a possible 
factor modulating excitatory neurotransmission in 
neuronal networks (Nedergaard et al., 2002; Newman, 
2003). ATP secretion from astrocytes has been sug-
gested to occur by four alternative pathways, such as 
an exocytotic vesicular release, ATP cassette proteins, 
connexin hemichannels, and osmolytic transporters 
linked to anion channels (Illes and Ribeiro, 2004). 

In view of these data the findings of Wirkner et al. 
(2002) reporting a positive interaction between P2Y 
and NMDA receptors at PFC pyramidal neurons, 
were reinvestigated by the same group of research-
ers (Wirkner et al., 2007). It was suggested that ATP 
may act at astrocytic P2Y4 receptors to exocytoti-
cally release vesicular glutamate onto neighbouring 
neurons. This glutamate stimulates type I mGluRs 
that positively modulate NMDA receptors through 
the Gq/phospholipase C/inositol 1,4,5-trisphosphate/
Ca2+/calmodulin kinase II transduction pathway. This 
picture was further complicated by experiments find-
ing differences between the effect of glutamate exo-
cytotically released from astrocytes by P2Y4 recep-
tors, and the effect of glutamate accumulating after 
the blockade of the astrocytic glutamate transporter 
EAAT2 (GLT-1) (Oliveira et al., 2008). The blockade 
of astrocytic glutamate uptake may lead to the stimu-
lation of group II mGluRs, while the triggering of 
exocytotic glutamate release by P2Y4 receptors may 
cause activation of group I mGluRs, both situated 
postsynaptically at layer V PFC pyramidal cells. Either 
group of mGluRs may interact with NMDA recep-
tors in a positive manner. Interestingly an exclusively 
neuronal modulatory interaction between P2Y1 and 
NMDA receptors was also described (Luthardt et al., 
2003). In this case P2Y1 receptors appeared to inter-
fere in a membrane delimited manner with the closely 
attached NMDA receptor-channels in the plasma 
membrane itself, since intracellular GDP-β-S, known 
to block the generation of Gβ,γ proteins transmitting 

such reactions, prevented the effect of P2Y1 receptor 
stimulation. 

In hippocampal brain slices of rats ATP appeared 
to activate P2X7 receptors at astroglial cells causing 
the release of glutamate which in turn activated a 
tonic current in CA1 pyramidal neurons (Fellin et 
al., 2006). However, at least in the rat PFC, there was 
no indication for any effect of the preferential P2X7 
receptor agonist dibenzoyl-ATP (Bz-ATP) on the 
amplitude of excitatory postsynaptic currents (EPSCs; 
recorded in layer V and evoked by electrical stimula-
tion in layer I/II), other than a marked and DPCPX 
reversible decrease (Oliveira et al., 2011). It was sug-
gested that this effect is due to the displacement of 
adenosine from its storage sites by Bz-adenosine gen-
erated from Bz-ATP by enzymatic degradation (for 
hippocampal mossy fibre-CA3 synapses see Kukley 
et al., 2004).

Long-term and bidirectional changes in synaptic 
strength are thought to provide a cellular basis for in-
formation storage in neuronal networks (Malenka and 
Bear, 2004). Studies investigating plasticity in layer V 
pyramidal cells of the PFC showed that tetanic stimu-
lation of layer I/II induced either long-term poten-
tiation (LTP) or long-term depression (LTD) which 
were both dependent on postsynaptic Ca2+ increases 
(Hirsch and Crepel, 1991; Hirsch and Crepel, 1992), 
see also Guzman et al., 2010). In subsequent studies, 
application of dopamine during tetanic stimulation 
induced a form of LTD (Law-Tho et al., 1995) that 
was found to be independent of NMDA receptors but 
required the activation of group I and II metabotropic 
glutamate receptors (mGluR) (Huang et al., 2004) 
and the mitogen-activated protein kinase (MAPK) 
pathway (Otani et al., 1999). 

P2X receptors have been shown to play a role in 
the regulation of synaptic plasticity of central syn-
apses resulting from their high Ca2+ permeability and 
capability to interact with other receptors (Pankratov 
et al., 2009). Moreover, previous studies revealed the 
presence of postsynaptic P2Y1 receptors on layer V 
pyramidal neurons in the PFC (see above). It has 
furthermore been shown that LTD in layer V py-
ramidal neurons of the PFC depend on the activa-
tion of mGluR1 and voltage-sensitive Ca2+ channels 
(Guzman et al., 2005; 2010). The stimulation of P2Y1 
receptors reduced Ca2+ transients associated with 
postsynaptic voltage-sensitive Ca2+ channels on apical 
dendrites and spines of layer V pyramidal neurons. 
It was suggested that this is the likely mechanism by 
which P2Y1 receptors are able to modulate synaptic 
plasticity.
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THE PURINERGIC SYSTEM AND COGNITIVE 
FUNCTIONS; IN VIVO DATA FOR THE 
PREFRONTAL CORTEX

One basic principle for sensitisation and drug abuse is 
reward- and withdrawal-related learning. The global 
term ‘learning’ refers to multiple physical changes of 
the structure of the CNS, thereby altering neuronal 
circuits involved in perceiving, performing, thinking 
and planning, and influencing future behavioural 
outcome by retrieving experiences or ‘memories’ 
(Kandel et al., 2000). While processes of learning and 
memory are under intensive investigation altogether, 
there are only few in vivo studies on the function 
of P2 receptors interacting with cognitive abilities,  
in particular such focussing on purinergic mecha-
nisms in the medial PFC. 

An indirect, albeit important, in vivo confirmation 
of the role of ATP and ADP in cognitive behaviour 
initially came from studies at the hippocampus, where 
activities of the ATP-diphosphohydrolase and the 
5’-nucleotidase were found to be decreased in rats 
after step-down inhibitory avoidance learning (Bonan 
et al., 1998; Rücker et al., 2004). This task triggers 
biochemical events in the hippocampus similar to 
LDP/LTP. Suramin, a broad spectrum P2 receptor 
antagonist and blocker of NMDA-receptors applied 
immediately post-training has been shown to impair 
inhibitory avoidance retention (Bonan et al., 1999) 
and also to interfere with responses to conditioned 
fear stimuli (Zou et al., 1998). Because in the latter ap-
proach D,L-2-amino-5-phosphonovaleric acid (APV) 
did not block the expression of fear conditioning,  
it was suggested that the effects of suramin were medi-
ated by P2 receptors (Kim et al., 1991). 

In a single trial bead discrimination test with young 
chicken, Cronin et al. (2011) observed two time points 
sensitive for memory retention after intracranial infu-
sion of suramin and the more selective P2 receptor  
antagonist PPADS until 2.5 minutes post-training 
and about 30 minutes afterwards (Cronin et al., 2011). 
These two periods of effective administration times 
suggested an impact of P2 receptor stimulation on the 
early short-term and the intermediate-term memory 
stages (Gibbs and Ng, 1977).

It is generally believed that any trial-specific infor-
mation maintained for minutes or hours is supported 
by the hippocampus and its projections to the PFC. 
On the other hand, the role of the PFC is not only 
to maintain information in working memory over 
a period of seconds but also to learn associations 
between context, locations and events and thereby 

to control executive functions, such as planning, or-
ganization, decision making, and adaptation (Euston 
et al., 2012; Chudasama, 2011). Some of the most 
compelling evidence for the fact that the PFC is 
involved in the control of information required to 
prospectively organize the ongoing action was pro-
vided by lesion studies in which the performance of 
rats gets worse when sets of interfering events were 
presented during a delay phase within a memory 
task but not by the delay itself (Gisquet-Verrier and  
Delatour, 2006).

Own data obtained from rats in a spatial delayed 
win-shift task have shown after introduction of a first 
delay that the performance was impaired independ-
ently of stimulation of prefrontal P2Y1 receptors 
by the selective agonist MRS2365 (Burnstock et al., 
2011). When trials with the delay were repeated at 
subsequent days, both MRS2365-treated animals and 
their controls were able to acquire the delayed task 
finally. However, each pre-trial infusion of MRS2365 
caused more errors in the phase after the delay than 
that of vehicle. This may suggest that prefrontal P2Y1 
receptors are not primarily involved in the ‘short-term’ 
storage of information per se but in its processing 
during and after the delay (‘recall’). It can be specu-
lated that the activation of P2Y1 receptors enhances 
the recognition and processing of stimuli negligible 
for the ongoing task. This idea is supported by data 
generated in a social discrimination setting, where 
an adult animal has to distinguish between a familiar 
and unfamiliar juvenile (Koch et al., 2010). MRS2365 
applied into the rat prefrontal cortex immediately 
prior to the test, deteriorated the naturally preferred 
investigation of the unfamiliar juvenile. As the overall 
time of inspection of both animals was unchanged, 
disturbed prefrontal information processing resulting 
in a lower capacity to focus on the unfamiliar juvenile 
by activation of P2Y1 receptors can be assumed. These 
attentional deficits mediated by prefrontal ATP are in 
agreement with data showing that the rodent PFC is 
indispensible to filter incoming relevant from irrel-
evant stimuli (Schneider and Koch, 2005). Own pre-
liminary data from the PFC and the motor cortex of 
rats (Koch et al., 2010; Franke et al., 2004) confirmed 
the presence of P2Y1 receptors on neurones and as-
trocytes in the respective cortical areas. Functional 
neuroimaging and clinical data revealed that cogni-
tive alterations in attention, behavioural inhibition, 
learning and memory found in addictive disorders 
are strongly related to dysfunctions of the PFC, so the 
involvement of P2 receptors is very likely (for review 
see Goldstein and Volkow, 2011). 
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In a very recent study on mice which investigated 
another behavioural phenomenon commonly accom-
panied by cognitive deficits, stress-induced depres-
sive-like behaviour, the stimulation of endogenous 
ATP release from astrocytes induced antidepressive-
like effects, obviously mediated by P2X2 receptors 
located in the PFC. The infusion of ATP and ATP-
γ-S, which is a not hydrolysable structural analogue, 
into the PFC but not into the hippocampus could 
reverse the stress-induced behavioural changes (Cao 
et al., 2013).

THE PURINERGIC SYSTEM AND ADDICTION;  
IN VIVO DATA FOR THE PREFRONTAL CORTEX

Repeated exposure to many drugs of abuse results in a 
progressive and enduring enhancement of the motor 
stimulant effect elicited by a subsequent drug chal-
lenge (Wolf, 1998; Vanderschuren and Kalivas, 2000). 
This so called behavioural sensitization provides an 
animal model for the intensification of drug craving 
believed to underlie addiction in humans. Mecha-
nistic similarities between sensitization and other 
forms of neuronal plasticity were first suggested on 
the basis of the ability of NMDA receptor antagonists 
to prevent the development of sensitization (Karler 
et al., 1989). 

Amphetamine-like drugs release dopamine into 
the PFC by the activation of dopaminergic cell bodies 
in the NAc; subsequently glutamatergic projections 
between the PFC and amygdala are stimulated, as 
well as glutamatergic outputs to the NAc and ventral 
tegmental area (Steketee, 2003; Kalivas, 2007). These 
latter projections play an apparently critical role in 
initiating drug seeking or craving. Thus, a dramatic 
increase in the density of dendritic spines of the NAc 
is elicited, accompanied by the enhancement of the 
insertion of AMPA receptors into the membrane of 
medium spiny neurons of the NAc associated with an 
increase in electrophysiological sensitivity to AMPA 
receptor stimulation (this mechanism is identical with 
that supposed to be a basis for LTP or LTD [Wolf et 
al., 2003]). Similar changes also occur after the appli-
cation of NMDA receptor antagonists which disturb 
the balance between NMDA and AMPA receptor-
mediated functions.

Application of the non-selective P2 receptor ago-
nist 2-methylthio ATP (2-MeSATP) into the NAc of 
rats raises the extracellular level of dopamine (Krügel 
et al., 1999), accompanied with enhanced locomo-
tion (Kittner et al., 2000). The repetitive intraperito-
neal (i.p.) injection of amphetamine for 5 successive 

days with a subsequent drug-free interval of 5 days 
led to an enhanced locomotion in comparison with 
the response after the first amphetamine application 
(Franke et al., 2003a; Kittner et al., 2001). Intracere-
broventricular (i.c.v.) pre-treatment with PPADS prior 
to each amphetamine administration prevented the 
development of sensitization. Hence it was suggested 
that the activation of P2 (probably P2Y1) receptors 
by endogenous ATP was an intermediary step in the 
sensitization process to amphetamine. This is sup-
ported by data, where repetitive stimulation of ventral 
tegmental dopaminergic neurons endowed with P2Y1 
receptors by 2-MeSATP induced a behavioural sen-
sitization to a single amphetamine challenge (Krügel 
et al., 2001a).
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A mediális prefrontális kérget (PFC) tekintik az emlős agykéreg legmagasabb rendű asszociációs 
területének, amely a kognitív funkciókban játszik szerepet. E terület 5. rétegének piramissejtjei 
kiemelkedő jelentőségűek a rövid távú munkamemória folyamatában. Általuk valósul meg  
a beérkező jelek integrációja, amely a ventrális tegmentális área dopaminerg sejtcsoportjaiból,  
a thalamus és a környező PFC piramissejtek glutamáterg valamint a helyi interneuronok 
GABAerg információiból származik. Ezeken a neuronokon megtalálhatók az NMDA és az 
AMPA típusú excitáros aminosav receptorok, amelyek szerepet játszanak az elemi tanulási 
folyamatok alapját képező szinaptikus plaszticitás szabályozásában. Az NMDA receptorok 
áramait egyrészt D1 dopamin receptorok, másrészt az ATP P2Y típusú receptorai szabályozzák. 
Utóbbi indirekt és direkt módon is megvalósul: a P2Y4 receptorok az asztrocitákból történő 
vezikuláris glutamát felszabadulás által fokozzák az NMDA receptorok áramait, míg a PFC 
neuronokon található P2Y1 receptorok stimulációja az NMDA áramok csökkenéséhez vezet.  
A PFC piramissejtjein kiváltott long-term depression (LTD, a szinaptikus hatékonyság hosszútávú 
csökkenése) P2Y1 receptorok aktiválásával blokkolható, amely hatás nem függ az NMDA 
receptoroktól, ezzel szemben a dendritek feszültségfüggő Ca2+ csatornái érintettek abban. 
In vivo adatok is alátámasztják azt a feltételezést, hogy a P2Y1 receptorok szerepet játszanak 
a kognitív folyamatok és az addikció szabályozásában. Például Delayed Spatial Win-Shift teszt 
esetében a P2Y1 receptorok aktiválása nem az elsődleges információtárolást rontja, hanem 
annak a folyamatát a késleltetés alatt és után. Általánosan elfogadott nézet, hogy az állatkísér-
letekben tapasztalt viselkedési szenzitizáció a humán addikció alapjául szolgáló drug craving 
(sóvárgás) felerősödésének a modellje. A P2Y1 receptorok blokádja a mezokortiko-limbikus 
dopaminerg rendszerben az amfetaminra történő szenzitizációt felfüggeszti.

Kulcsszavak: prefrontális kortex, dopamin, D1 receptorok, D2 receptorok, glutamát, NMDA 
receptorok, AMPA receptorok, ATP, P2X receptorok, P2Y receptorok

A prefrontális kéreg piramissejtjeinek integráló szerepe  
a neuronális és glia eredetű információk feldolgozásában,  
patkányban; a kognitív funkciók és az addiktív viselkedés 
purinerg mechanizmusokkal történő szabályozása


